

STO-EN-MSG-211 2.6 - 1

Technical Description of HLA/NETN Including
Interoperation with C2SIM and MSaaS

Tom van den Berg
TNO Applied Physics Laboratory

THE NETHERLANDS

tom.vandenberg@tno.nl

ABSTRACT
M&S as a Service (MSaaS) is a new concept of providing and consuming M&S Services. The concept
includes service orientation and the provision of M&S applications via the as-a-service model of cloud
computing, and has both an organizational dimension as well as a technical dimension. The concept has the
potential to greatly reduce the barriers of cost and accessibility, and to result in greater utility of M&S
throughout NATO and the nations.

This paper demonstrates the application of the Kubernetes technology platform in the realization of an
MSaaS Capability, in particular for the key capabilities discovery, composition, and execution. This paper
also shows the successful application of several simulation standards in cloud-based simulation, including
HLA, NETN, WebLVC, and C2SIM.

1.0 INTRODUCTION

M&S as a Service (MSaaS) is a new concept of providing and consuming M&S Services (see [1] for more
information). The concept includes service orientation and the provision of M&S applications via the as-a-
service model of cloud computing, and has both an organizational dimension as well as a technical
dimension. The concept has the potential to greatly reduce the barriers of cost and accessibility, and to result
in greater utility of M&S throughout NATO and the nations.

The concept is described in four documents, together called the Allied Framework for MSaaS: MSaaS
Operational Concept Description, MSaaS Concept of Employment, MSaaS Business Model, and MSaaS
Technical Reference Architecture.

The key capabilities supported by the Allied Framework for MSaaS are described in the MSaaS Operational
Concept Description. These are:

• Discover Services: The Allied Framework for MSaaS provides a mechanism for users to search and
discover M&S services and assets (e.g., Data, Services, Models, Federations, and Scenarios).

• Compose Services: The Allied Framework for MSaaS provides the ability to compose discovered
services to perform a given simulation use case.

• Execute Services: The Allied Framework for MSaaS provides the ability to deploy the composed
services automatically on a cloud-based or local computing infrastructure.

The MSaaS Technical Reference Architecture defines the building blocks of an MSaaS Capability, including
Portal Applications that provide these key capabilities. It defines requirements and standards associated with
building blocks, but does not prescribe how these building blocks should be realized and what technology
should be used. The technology choices are left to the implementor.

mailto:tom.vandenberg@tno.nl

Technical Description of HLA/NETN
Including Interoperation with C2SIM and MSaaS

2.6 - 2 STO-EN-MSG-211

Over the last years many enabling technologies have emerged from the field of Information and
Communications Technology (ICT) that are essential to implementing an MSaaS Capability. Figure 1 from
Cloud Native Computing Foundation (CNCF, https://www.cncf.io) illustrates the breadth of cloud-related
projects and technology to pick from.

Figure 1: CNCF Cloud Native Landscape.

Kubernetes is one of the main projects in the CNCF landscape and is an open-source system for automating
deployment, scaling, and management of containerized applications. The following sections introduce
Kubernetes as technology platform and show how Kubernetes can be used to implement an MSaaS
Capability supporting the key capabilities discovery, composition, and execution. Kubernetes is one of the
best-known open source platform technologies for container orchestration and has an large ecosystem of
tools and applications.

2.0 DOCUMENT OVERVIEW

This paper will guide the reader in using Kubernetes as technology platform for implementing the technical
aspects of MSaaS. The structure of this paper is as follows:

• An overview of the Kubernetes technology platform.

• Presentation of the three key MSaaS capabilities using Kubernetes, namely:

Technical Description of HLA/NETN
Including Interoperation with C2SIM and MSaaS

STO-EN-MSG-211 2.6 - 3

• Discovery.

• Composition.

• Execution.

• Perform a small exercise.

• Summary.

3.0 ABOUT KUBERNETES

Kubernetes is a container orchestration environment that can be used to realize a low-cost and feature rich
MSaaS Capability, focussed on containerized applications. The original code base has its roots in Borg – a
production-grade orchestration system used by Google. There is currently a large and lively community behind
the Open Source development and associated ecosystem of Kubernetes [2]. Several major companies
use Kubernetes to manage their containerized applications, such as Google, ING Bank, and
Booking.com. Kubernetes is nicknamed “K8s” where the digit 8 refers to the eight letters between “K” and “s”.

It is out of the scope of this paper to discuss Kubernetes in great depth. The following sections provide a
brief overview on what Kubernetes can provide, about containers as underlying technology, and about Helm
as package manager for Kubernetes. A good source of information for further reading is the Kubernetes site
itself.

3.1 What Services does Kubernetes Provide?
Kubernetes provides an environment for deploying and orchestrating containerized applications in a cluster
of so called “worker nodes”. Kubernetes consists of several parts to manage the cluster and includes a variety
of new concepts which are best explained by the Kubernetes documentation available on the Kubernetes site.

Some of the main services that Kubernetes provides are listed on the Kubernetes site [3] and are as follows:

• Service discovery and load balancing:

Kubernetes can expose a container using the DNS name or using their own IP address. If traffic to a
container is high, Kubernetes is able to load balance and distribute the network traffic so that the
deployment is stable.

• Storage orchestration

Kubernetes allows you to automatically mount a storage system of your choice, such as local
storages, public cloud providers, and more.

• Automated rollouts and rollbacks

You can describe the desired state for your deployed containers using Kubernetes, and it can change
the actual state to the desired state at a controlled rate. For example, you can automate Kubernetes to
create new containers for your deployment, remove existing containers and adopt all their resources
to the new container.

• Automatic bin packing

You provide Kubernetes with a cluster of nodes that it can use to run containerized tasks. You tell
Kubernetes how much CPU and memory (RAM) each container needs. Kubernetes can fit
containers onto your nodes to make the best use of your resources.

Technical Description of HLA/NETN
Including Interoperation with C2SIM and MSaaS

2.6 - 4 STO-EN-MSG-211

• Self-healing

Kubernetes restarts containers that fail, replaces containers, kills containers that don’t respond to
your user-defined health check, and doesn’t advertise them to clients until they are ready to serve.

• Secret and configuration management

Kubernetes lets you store and manage sensitive information, such as passwords, OAuth tokens, and
SSH keys. You can deploy and update secrets and application configuration without rebuilding your
container images, and without exposing secrets in your stack configuration.

3.2 What is a Container?
Containers are process execution environments that provide isolation from other applications running on a
host. A process running within a container appears to be running in its own execution environment with a
dedicated filesystem, memory and process space. The operating system kernel manages resources to allow
multiple such containers to run simultaneously on a single computer.

Virtual machines (VM) provide isolation similar to that provided by containers. However, each VM provides
a complete operating system that needs to be booted each time it starts. A hypervisor is required to share
computing resources between multiple VMs running on a single computer. In contrast, containers run within
the context of a single operating system with that operating system’s kernel being shared by all containers. In
effect, the operating system acts as the hypervisor for containers. This results in start-up and shutdown times
for containers being significantly faster than for VMs.

The typical deployment and comparison of virtualization technology is illustrated in Figure 2:

• Traditional deployment: legacy M&S applications, e.g., with built-in graphical front-end or with
specific hardware.

• Virtualized deployment: virtualization of traditional/legacy M&S applications.

• Container deployment: containerization of either traditional/legacy or newly architected M&S
applications in smaller and interoperable back-end simulation services and web-enabled front-end
user interfaces.

Figure 2: Deployment and virtualization (from [1]).

A common use case for containers is the packaging and deployment of an application inclusive of all its
dependencies. This allows multiple applications with different dependencies to be run on a single computer.
This is particularly beneficial when applications have a dependency on the same third-party product but at

Technical Description of HLA/NETN
Including Interoperation with C2SIM and MSaaS

STO-EN-MSG-211 2.6 - 5

slightly different versions. Deploying those applications in containers allows each to have the version of the
dependency they require and removes the need for the host system to have multiple, potentially conflicting,
dependencies installed.

This encapsulation also allows a host computer to be minimally configured before being ready to run an
application. A host need only have the necessary container runtime engine installed to be able to run
containers. This is particularly useful in a cloud computing environment where computing resources can be
provisioned on the fly with a minimal standard configuration and be ready to run a wide variety
of applications.

3.3 Helm as Kubernetes Package Manager
Helm [4] is a tool in the Kubernetes ecosystem that automates the creation, packaging, configuration, and
deployment of Kubernetes applications by combining various configuration files into a single reusable
package called Helm Chart, see Figure 3. Helm itself is a command line tool, but a product like Rancher [5]
provides a graphical front-end to install, upgrade, or de-install a Helm Chart in a Kubernetes cluster.

Figure 3: Helm.

A Helm Chart is a collection of files inside of a directory. This includes Kubernetes configuration files for
deployments, services, secrets, and config maps that define the desired state of the application. The name of
the directory is the name of the chart. Thus, a chart for the pitch-crc would be stored in a pitch-crc directory.
Inside of this directory Helm expects a structure as shown in Figure 4.

pith-crc/
 Chart.yaml # A YAML file containing information about the chart
 LICENSE # OPTIONAL: A plain text file containing the license for the chart
 README.md # OPTIONAL: A human-readable README file
 values.yaml # The default configuration values for this chart
 values.schema.json # OPTIONAL: A JSON Schema for imposing a structure on the values.yaml file
 charts/ # A directory containing any charts upon which this chart depends.
 crds/ # Custom Resource Definitions
 templates/ # A directory of templates that, when combined with values,
 # will generate valid Kubernetes manifest files.
 templates/NOTES.txt # OPTIONAL: A plain text file containing short usage notes

Figure 4: Helm Chart directory structure.

The file named “values.yaml” contains default values of the chart, for instance for the Pitch CRC the
network port the application should listen on and the container image version to use. Helm uses the values in
this file to expand the templates in the “templates” directory to Kubernetes manifest files. The manifest files
are used by Helm to deploy the application in a Kubernetes cluster.

One of the required files in a Helm Chart is named “Chart.yaml”. The content of this file provides
information about the chart, see Figure 5. Most properties in this file are optional; required properties are the
apiVersion, the name of the chart, and the version of the chart. The content of this file is typically used for
display in a catalog, or for searching in a registry. An example for the Pitch RTI is provided in Figure 6.

Technical Description of HLA/NETN
Including Interoperation with C2SIM and MSaaS

2.6 - 6 STO-EN-MSG-211

Figure 5: The Chart.yaml file.

apiVersion: v1
name: crc
description: Pitch Central Run-Time Infrastructure Component
icon: file://Product-Logo-pRTI-b-150x150.png
version: 1.0
appVersion: 5.5.5.0
home: https://pitchtechnologies.com
keywords:
- HLA
- Simulation

Figure 6: Pitch RTI Chart.yaml file.

Helm Charts may be served from a dedicated Helm Chart repository server such as ChartMuseum [6], an
HTTP Server, or from a collaboration environment such as GitHub. The use of such a repository server is
comparable to how package management for Linux works. The use of Helm Charts is further illustrated in
the next chapter.

4.0 MSAAS KEY CAPABILITIES

The following sections discuss the use of Kubernetes as an MSaaS Capability in relation to Discovery,
Composition, and Execution.

4.1 Discovery
Central to service discovery is a service registry. The MSaaS Technical Reference Architecture defines M&S
Registry Services as “the capabilities to store, manage, search and retrieve data about (i.e., metadata)
simulation resources stored by the M&S Repository Services, such as description of services interface and

Technical Description of HLA/NETN
Including Interoperation with C2SIM and MSaaS

STO-EN-MSG-211 2.6 - 7

contract, information about QoS policies, and security and versioning information”. And M&S Repository
Services as “the capabilities to store, retrieve and manage simulation resources and associations with /
references to metadata managed by M&S Registry Services.”

The concept of registry and repository is shown in Figure 7. Given some event objective, a user searches a
registry for suitable simulation services. The associated resources of candidate services may be downloaded
from the repository where they are located in.

Figure 7: Registry and repository.

A recent development is that of the Artifact Hub [7], as a central place where metadata of cloud-related
artifacts such as Kubernetes Helm Charts can be published and searched. The Artifact Hub does not store the
artifacts itself, but harvests the metadata from the provided Helm Chart Repositories and makes the metadata
available, to be searched in one place. The Artifact Hub thus functions as a registry with metadata.

The Artifact Hub is an open source project and the software can be deployed in an on-premises Kubernetes
cluster, obviously using Helm. The opening page of the public Artifact Hub is shown in Figure 8, providing
a simple google-like page to search for information.

Figure 8: Artifact Hub to share and search cloud-related artifacts such as Helm Charts.

Technical Description of HLA/NETN
Including Interoperation with C2SIM and MSaaS

2.6 - 8 STO-EN-MSG-211

A fictitious search for “crc” yields in this example only one cloud-artifact, namely the Pitch RTI [8], as
shown in Figure 9. Clicking on the discovered artifact provides more information such as type of artifact,
version information, and where to get it; see Figure 10. Note that this information is all metadata. The artifact
itself (a Kubernetes Helm Chart in this example) is located in the supplier’s Helm Chart repository.

The address of the Helm Chart Repository where the discovered artifact (a Helm Chart) is located in must be
added to the local Helm tool or added as a new Helm Chart Repository in Rancher, so that Helm can resolve
the discovered Helm Chart.

Figure 9: Discovered cloud-artifact for the Pitch RTI.

Figure 10: Cloud-artifact metadata.

Technical Description of HLA/NETN
Including Interoperation with C2SIM and MSaaS

STO-EN-MSG-211 2.6 - 9

4.2 Composition
The composition of M&S Resources is in general an engineering activity where human effort is required to
integrate and test these resources. MSaaS is not a magic bullet that will solve the interoperability challenges
associated with composing M&S Resources, and take away the DSEEP [9] engineering activities. These
activities remain to be valid as before. However, an MSaaS Capability can offer several services to support
the composition of M&S Resources. For example,

• Metadata repository services to provide access to schema files for object models used in the MSaaS
Capability. For instance, HLA reference FOMs (e.g. RPR-FOM and NETN-FOM versions),
reference FOM modules, and related interoperability requirements;

• Component registry services to provide information about simulation components and thereby aid
the selection, configuration, and integration of simulation components;

• Component repository services to provide access to the actual simulation components; and

• Component test services to verify if simulation components comply with the interoperability
requirements.

Let’s continue the example with Kubernetes. A simulation application is described by a Helm Chart where
the chart is a collection of text files that declaratively describe what to deploy. A chart can be used to deploy
a single simulation application, or something more complex such as an entire composition of simulation
applications. A composition of simulation applications can be created by adding (dropping in) sub-charts to
the main Helm Chart, or alternatively, by creating dependencies between Helm Charts (see Figure 11). With
the Helm “package” command the chart dependencies are retrieved from the referenced Helm Chart
repositories and added as sub-charts to the main chart. The Helm “install” command will automatically
deploy the main chart and any contained sub-charts using Kubernetes as the orchestrator.

Figure 11: Kubernetes Helm Chart composition with sub-charts X, Y, and Z.

The activity of composing a new Helm Chart from existing Helm Charts described above assumes that the
referenced simulation components are composable at both an engineering level and a conceptual level.
Engineering composability is defined in Petty’s composability Lexicon [10] and concerns the technical or
implementation aspects of composing components. For instance, interfacing mechanisms, data formats, and
physical timing (i.e., can components be technically and syntactically connected). The other type of
composability defined by Petty is modelling (conceptual) composability. This concerns the question whether

Technical Description of HLA/NETN
Including Interoperation with C2SIM and MSaaS

2.6 - 10 STO-EN-MSG-211

models that make up the composition can be meaningfully composed (i.e., is the combination of models
semantically valid). The main activity in composing Helm Charts concerns configurability, i.e. the
configuration of Helm sub-charts (by editing their “values.yaml” file) such that they can function as part of
the larger composition.

The creation of the composition of Helm Charts is mostly a manual task, but the mentioned support services
can help the engineer to perform this task. The composition can be uploaded to a Helm Chart Repository
(typically your own one) as a new Helm Chart, where the metadata of the new chart can be made available to
the public or a private Artifact Hub, see Figure 12.

Figure 12: Helm Chart development.

4.3 Execution
Rancher [5] is a management tool to deploy and manage Kubernetes clusters on sets of compute nodes.
Rancher provides a UI to manage and control workloads in each Kubernetes cluster, and a catalog from
where Helm Charts can be browsed and started in a cluster. The data that is shown in the catalog is retrieved
from public or private Helm Chart repositories and/or a Git repositories, see Figure 13.

Figure 13: Rancher Helm Chart catalog to browse and start Helm Charts.

An example of a Rancher Helm Chart catalog is provided in Figure 14. From this catalog the user can start a
Helm application with just a few clicks. For example, after selecting the Pitch RTI (CRC), the user runs
through two steps where he can provide application deployment-specific configuration options such as shown
in Figure 15. The application is deployed in the Kubernetes cluster by simply pressing the Install button. Note
again that an application can be single simulation application, or a composition of simulation applications.

Technical Description of HLA/NETN
Including Interoperation with C2SIM and MSaaS

STO-EN-MSG-211 2.6 - 11

Figure 14: Rancher Helm Chart catalog with simulation applications.

Figure 15: Helm Chart configuration options.

On pressing Install the required container images are pulled on-demand from container repositories, such as
the public Docker Hub or a private Docker Registry. Several Kubernetes workloads will be created for the
application in the container orchestration environment, depending on the content of the Helm Chart.

Provided services (if any) and their exposed network ports can be found under the Service Discovery entry in
the Rancher UI. In the example of the Pitch RTI only one workload is created providing two services
(see Figure 16): one service for HLA federates to connect to (named the “crc” service), and one service for
the end-user (named the “web” service). The latter service listens on port 32363 and serves the Pitch RTI
Web UI shown in Figure 17.

Technical Description of HLA/NETN
Including Interoperation with C2SIM and MSaaS

2.6 - 12 STO-EN-MSG-211

Figure 16: Kubernetes services.

Figure 17: Pitch Web UI.

The Rancher Helm Chart catalog is just one way of starting a Helm application. An application may also be
started or stopped via the Helm command line tool. The latter interface enables the implementation of other
(user provided) applications that can start, monitor, and control applications in a Helm Chart repository.

5.0 A SMALL EXERCISE

This chapter runs through a small simulation exercise involving a number of simulation applications that are
deployed on-demand in a Kubernetes cluster. The exercise demonstrates the on-demand deployment and
cloud-based execution of applications in a Kubernetes cluster, the simulation initialization pattern using
C2SIM LOX INI and HLA/NETN, and the entity tasking and reporting pattern using HLA/NETN (see [11]).

Two actors are involved in the simulation exercise: the Provider managing and controlling the simulation
applications in the Kubernetes cluster, and the User requesting and using the provided services for
performing the exercise, see Figure 18. The Provider can choose from a range of simulation applications in
the catalog. These applications are interoperable by design and can be used in conjunction for a variety of
purposes. A few are used for the purpose of this exercise.

Technical Description of HLA/NETN
Including Interoperation with C2SIM and MSaaS

STO-EN-MSG-211 2.6 - 13

Figure 18: A small exercise involving a Provider and a User.

The Provider is in this example responsible for starting and stopping the simulation applications, and the
User is responsible for the initialization of the simulation and the issueing of simulation tasks via the
provided service interface (a web UI). The individual applications are started by the Provider one by one for
demonstration purposes (step 1, 3, and 4 in the table below). And while the Provider is starting the
simulation applications the User already submits simulation initialisation data as soon as the Simulation
Control Application has been started (step 2 in the table).

The steps in the exercise are as follows:

Step Actor Description

 Provider Start a Simulation Control Application (TNO Entity Plan View Display)

 User Initialize the simulation with C2SIM LOX Initialization data

 Provider Start a Computer Generated Forces (CGF) application (VTMaK VR-Forces)

 Provider Start another simple CGF application (TNO Entity Creator)

 User Issue a NETN MoveToLocation task to an entity in the simulation

 User Issue a NETN MagicMove task to an entity in the simulation

 Provider Terminate the applications

Once the three applications have been started the HLA federation shown in Figure 19 is created in the
Kubernetes cluster. The number above each federate name refers to the step in the exercise in which the
HLA federate is created and joining the federation. The arrows in the figure relate to the data flow between
the HLA federate and the RTI, that is, the publication and subscription agreements of the applications. The
applications all use the NETN FOM as the federation object model (see [11] for more information).

Figure 19: A small HLA federation.

Technical Description of HLA/NETN
Including Interoperation with C2SIM and MSaaS

2.6 - 14 STO-EN-MSG-211

The steps in the exercise are described in the next sections where we will see the following standards in action:
• C2SIM LOX (SISO-STD-019-2020 and SISO-STD-019-2020), MSDL (SISO-STD-007-2008), and

NETN-ORG (AMSP-04B): for the initialization of the simulation.
• NETN-ETR (AMSP-04B): for the tasking and reporting of simulation entities.
• HLA (IEEE 1516-2010): for federating applications in a simulation environment.
• WebLVC (SISO-STD-017-2022): for the communication of simulation data within the Entity Plan

View Display.

5.1 Start TNO Entity Plan View Display
The TNO Entity Plan View Display (EPVD) is a simulation control application that enables the user to
initialize the simulation with MSDL or C2SIM LOX Initialization data, and to submit NETN tasks to entities
in the simulation via a web UI.

The EPVD consists of several containerized parts:
• The EPVD back-end part handles the data exchange between the EPVD front-end part and the HLA

RTI. This part is a WebLVC Server that joins the federation under the federate type name EPVD.
• The EPVD front-end part provides the user interface (web UI). This part is a Node.js based

application.
• An Orbat Server manages the initialization of the simulation. The Orbat Server is controlled from

the EPVD front-end part and joins the federation under the federate type name ORBATSERVER.

The communication between the EPVD back-end and front-end part uses WebLVC (SISO-STD-017-2022).
WebLVC specifies a standard way of encoding simulation messages in JSON (JavaScript Object Notation),
where JSON is a commonly used format for the exchange of data in web-based applications.

The EPVD is the first application that will be started in this exercise (besides the Pitch CRC). The tasks to
start the EPVD are as follows:

1) Browse the catalog for the application name Entity Plan View Display.

https://www.sisostds.org/DigitalLibrary.aspx?Command=Core_Download&EntryId=45690

Technical Description of HLA/NETN
Including Interoperation with C2SIM and MSaaS

STO-EN-MSG-211 2.6 - 15

2) Open the Helm Chart from the catalog.

3) Provide the Kubernetes namespace and deployment name for the application (step 1). If the name is
left empty, then Rancher will generate a name.

Technical Description of HLA/NETN
Including Interoperation with C2SIM and MSaaS

2.6 - 16 STO-EN-MSG-211

4) Provide application related information (step 2), such as RTI connection information.

5) Press Install to deploy the application in the Kubernetes cluster.

Technical Description of HLA/NETN
Including Interoperation with C2SIM and MSaaS

STO-EN-MSG-211 2.6 - 17

6) Open the Pitch RTI Web UI to confirm that two HLA federates have joined the federation.

7) Open the EPVD UI to confirm that there are no entities and that there is no ORBAT data.

5.2 Initialize Simulation with a C2SIM LOX Initialization File
From the EPVD UI the simulation can be initialized with one or more MSDL or C2SIM LOX Initialization
files. The MSDL or LOX data is published in the HLA federation as NETN-ORG object instances. The NETN
Organization FOM Module (NETN-ORG) is a specification of how to represent organizations in a federated
simulation. The representation is used in this small exercise for providing the initial state of simulated entities.

In this example the C2SIM LOX Initialization file “CWIX-2023 initializev9rev7.xml’ is used. A graphical
view of the LOX initialisation data in the file is provided in Figure 20.

Technical Description of HLA/NETN
Including Interoperation with C2SIM and MSaaS

2.6 - 18 STO-EN-MSG-211

Figure 20: C2SIM LOX Initialisation data.

This file defines three force sides:
• NATOCoalition (friendly force side).
• WASA (enemy force side).
• Neutral (neutral force side, not shown in figure since there are no elements defined for the side).

Each force side holds several types of entities, organized in a hierarchical structure. The file also includes
information on modeling responsibilities. That is, what simulation application is responsible for the
modelling of the unit or equipment item defined in the C2SIM LOX Initialization file.
The tasks for initialization are as follows:

1) From the EPVD UI, set “NATOCoalition” as the name of the force that is considered as the friendly
force, and browse for the file named “CWIX-2023 initializev9rev7.xml”.

The reference force can be updated in the EPVD at any time, but here the force name is set just
before the simulation initialization data is uploaded.

Technical Description of HLA/NETN
Including Interoperation with C2SIM and MSaaS

STO-EN-MSG-211 2.6 - 19

2) Press UPLOAD ORBAT to initialize the simulation with the given data.

The initialization data is published as HLA NETN-ORG object instances in the federation. The
force sides are shown in the ORBAT panel of the EPVD UI. At this point the map panel does not
show any entities since no CGFs have joined the federation yet.

Technical Description of HLA/NETN
Including Interoperation with C2SIM and MSaaS

2.6 - 20 STO-EN-MSG-211

3) Open the Pitch RTI Web UI to view what HLA NETN-ORG object instances have been created.
In this example: 3 Force, 9 EquipmentItem, 34 Unit, and 6 FederateApplication object instances.
The modeling responsibility of the equipment items and units are allocated to the 6 federate
applications. The details are described by the NETN-ORG object instances.

5.3 START VTMAK VR FORCES

VR Forces is a Computer Generated Forces application from VTMaK [12]. VR Forces includes many
simulation models for battlefield units and systems at both entity and aggregate level. VR Forces consists of
two parts, namely a front-end UI and a back-end simulation engine. Both parts are HLA federates and can be
enriched with plugins, providing the ability to add user-defined functionality.

In this step the VR Forces back-end is started, which has been enriched with several plugins to make it
“NETN-FOM” compliant.

1) Browse the catalog for the application named VR Forces Entity Generator.

Technical Description of HLA/NETN
Including Interoperation with C2SIM and MSaaS

STO-EN-MSG-211 2.6 - 21

2) Open the Helm Chart from the catalog.

3) Provide the Kubernetes namespace and deployment name for the application (step 1).

Technical Description of HLA/NETN
Including Interoperation with C2SIM and MSaaS

2.6 - 22 STO-EN-MSG-211

4) Provide application related information (step 2).

In this task the name under which VR Forces must join the federation is set to “NLD-VRFORCES”.
VR Forces will look for published ORBAT elements that are allocated to this federate name and
subsequently will create the entities for these elements.

5) Provide application related information (step 2).

In this task the name of the reference force is set to NATOCoalition. The reference force is the force
side considered to be the friendly side (see also EPVD).

Technical Description of HLA/NETN
Including Interoperation with C2SIM and MSaaS

STO-EN-MSG-211 2.6 - 23

6) Press Install to deploy the application in the Kubernetes cluster.

7) Open the Pitch RTI Web UI to confirm that three HLA federates have now joined the federation.

Technical Description of HLA/NETN
Including Interoperation with C2SIM and MSaaS

2.6 - 24 STO-EN-MSG-211

8) Open the EPVD UI to confirm that the entities allocated to VR Forces have been created.

5.4 START TNO ENTITY CREATOR

The TNO Entity Creator is a simple application that merely creates entities for the assigned ORBAT
elements, and can accept NETN Magic Move tasks to reposition these entities. In this step the Entity Creator
is started. The tasks are similar to VR Forces, with the difference that the application shall join the federation
using the name “NPS”.

1) Browse the catalog for the application named Entity Creator.

Technical Description of HLA/NETN
Including Interoperation with C2SIM and MSaaS

STO-EN-MSG-211 2.6 - 25

2) Open the Helm Chart from the catalog.

3) Provide the Kubernetes namespace and deployment name for the application (step 1).

Technical Description of HLA/NETN
Including Interoperation with C2SIM and MSaaS

2.6 - 26 STO-EN-MSG-211

4) Provide application related information (step 2).

In this task the federate name for which the Entity Creator must create entities is set to “NPS”. The
Entity Creator will look for published ORBAT elements that are allocated to this federate name and
subsequently create the entities for these elements. In addition, the name of the reference force is set
to “NATOCoalition”. The Entity Creator itself joins under the federate type name ENTITY-
CREATOR.

5) Press Install to deploy the application in the Kubernetes cluster.

Technical Description of HLA/NETN
Including Interoperation with C2SIM and MSaaS

STO-EN-MSG-211 2.6 - 27

6) Open the EPVD UI to confirm that the entities allocated to the Entity Creator have been created.

For example, SBC-boat and USABoat4 have been created.

7) Open the Pitch RTI Web UI to confirm that four HLA federates have now joined the federation.

5.5 Issue NETN MoveToLocation Task
At this step two CGFs and a simulation control application are deployed in the Kubernetes cluster. The
simulation is initialized and the two CGFs have created their allocated entities. Both CGFs are NETN-ETR
(Entity Tasking and Reporting) FOM compliant and can handle tasks defined in this FOM module. The
NETN-ETR FOM module specifies common low-level tasks that can easily be interpreted and executed. The
FOM module also defines a set of reports to provide status or management information. In this small
exercise we use the MoveToLocation task as example.

From the EPVD UI the entity named “3BnBcoy” is given the task to move to a certain location. While
moving to the target position, the entity provides position reports. Note that for the EPVD UI it is transparent
which CGF manages the entity. The CGF that has the modeling responsibility for the entity is required to
consume and process the NETN MoveToLocation task.

Technical Description of HLA/NETN
Including Interoperation with C2SIM and MSaaS

2.6 - 28 STO-EN-MSG-211

The tasks are as follows:
1) From the EPVD UI right-click on the entity 3BnBcoy to open the menu with available tasks.

The menu is constructed dynamically. The EPVD queries the CGF what tasks a discovered entity
supports and constructs the menu from the returned information. Thus, another entity may have a
different menu with tasks.
The EPVD is agnostic with regards to the owner of an entity. From the C2SIM LOX Initialization
file we happen to know that VR Forces has the modeling responsibility for 3BnBcoy.

2) Select the MoveToLocation task and enter waypoints for the route to be taken.

Technical Description of HLA/NETN
Including Interoperation with C2SIM and MSaaS

STO-EN-MSG-211 2.6 - 29

3) Submit the task.

The CGF that manages the entity shall report back on the task status. In the example below the task
status is “Executing”. If multiple tasks are submitted, they are either placed (by the CGF) in a
waiting queue, or are executed concurrently, depending on the task mode and type of task.

4) Check that the entity is moving.

By hoovering on the entity, a pop-up appears with information amongst other speed information.
The speed of the entity is 10 m/s.

Technical Description of HLA/NETN
Including Interoperation with C2SIM and MSaaS

2.6 - 30 STO-EN-MSG-211

5) View position reports.

While the entity is moving the CGF may provide position reports of the entity. These (if any) can be
viewed in the EPVD UI.

5.6 Issue NETN MagicMove task
While the MoveToLocation task is in progress let’s reposition another entity “SBC-boat” with a magic
move. This is accomplished by a drag & drop of the entity on the new position in the EPVD UI. Under the
hood the EPVD sends a NETN MagicMove task for the target entity into the federation execution.

1) Select SBC-boat.

Technical Description of HLA/NETN
Including Interoperation with C2SIM and MSaaS

STO-EN-MSG-211 2.6 - 31

2) And drop SBC-boat on the new position.

We happen to know from the C2SIM LOX Initialization file that SBC-boat is managed by the Entity
Creator. So, the NETN MagicMove task is executed by the Entity Creator application.

5.7 Terminate Applications
In this final step the applications are terminated. One or more applications can be terminated from the
Installed Apps section. In this case the applications are terminated one by one.

1) Terminate VR Forces.

Select the Entity Generator application and press Delete.

Technical Description of HLA/NETN
Including Interoperation with C2SIM and MSaaS

2.6 - 32 STO-EN-MSG-211

2) Confirm the deletion by pressing Delete again.

3) The application is removed from the cluster.

Rancher performs the Helm uninstall command to remove an application from the cluster.

Technical Description of HLA/NETN
Including Interoperation with C2SIM and MSaaS

STO-EN-MSG-211 2.6 - 33

4) Open the Pitch RTI Web UI to confirm that VR Forces resigned from the federation.

5) Open the EPVD UI to confirm that the entities allocated to VR Forces have been removed from the
simulation.

Technical Description of HLA/NETN
Including Interoperation with C2SIM and MSaaS

2.6 - 34 STO-EN-MSG-211

6) Terminate the other applications.

The Entity Creator and EPVD are terminated in the same way as VR Forces. The result is that all
federates have resigned from the federation.

6.0 SUMMARY

This paper introduced Kubernetes as technology platform and showed how Kubernetes can be used to
implement an MSaaS Capability supporting the key capabilities discovery, composition, and execution. In
addition, a small example exercise demonstrated the cloud-based deployment and execution of a few
simulation applications. These applications, such as VR Forces, could be searched and started from a
catalog. The exercise showed the successful application of the following simulation standards:

• C2SIM LOX (SISO-STD-019-2020 and SISO-STD-019-2020), MSDL (SISO-STD-007-2008), and
NETN-ORG (AMSP-04B): for the initialization of the simulation.

• NETN-ETR (AMSP-04B): for the tasking and reporting of simulation entities.

• HLA (IEEE 1516-2010): for connecting applications in a simulation environment.

• WebLVC (SISO-STD-017-2022): for the communication of simulation data within the EPVD.

7.0 REFERENCES

[1] T. van den Berg, “Overview of M&S as a Service, paper number 1.6,” in MSG-211 Lecture Series
Modelling and Simulation Standards in NATO Federated Mission Networking, 2023.

[2] “Kubernetes,” 2023. [Online]. Available: https://kubernetes.io

[3] “Kubernetes,” [Online]. Available: https://kubernetes.io/docs/concepts/overview/ [Accessed 2023].

[4] “Helm,” [Online]. Available: https://helm.sh

[5] “Rancher,” [Online]. Available: https://www.rancher.com/

https://www.sisostds.org/DigitalLibrary.aspx?Command=Core_Download&EntryId=45690
https://kubernetes.io/
https://kubernetes.io/docs/concepts/overview/
https://helm.sh/
https://www.rancher.com/

Technical Description of HLA/NETN
Including Interoperation with C2SIM and MSaaS

STO-EN-MSG-211 2.6 - 35

[6] “ChartMuseum,” [Online]. Available: https://github.com/helm/chartmuseum

[7] “Artifact Hub,” [Online]. Available: https://artifacthub.io/

[8] “Pitch Technologies,” [Online]. Available: https://pitchtechnologies.com/

[9] “Distributes Simulation Engineering and Execution Process (IEEE-1730),” IEEE, 2010.

[10] Petty, “A Composability Lexicon (03S-SIW-023),” in SISO Simulation Interoperability Workshop,
2003.

[11] T. van den Berg, “High Level Architecture and NATO Education and Training Network (NETN)
Federation Object Model (FOM) overview, paper number 1.5,” in MSG-211 Lecture Series on
Modelling and Simulation Standards in NATO Federated Mission Networking, 2023.

[12] “VTMaK,” [Online]. Available: https://www.mak.com/

[13] M. Wurster, U. Breitenbücher, M. Falkenthal and e. al., “The essential deployment metamodel: a
systematic review of deployment automation technologies,” SICS Softw.-Inensiv. Cyber-Phys. Syst.,
vol. 35, 2020.

https://github.com/helm/chartmuseum
https://artifacthub.io/
https://pitchtechnologies.com/
https://www.mak.com/

Technical Description of HLA/NETN
Including Interoperation with C2SIM and MSaaS

2.6 - 36 STO-EN-MSG-211

